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Problem

Project Purpose: Our research develops novel design and control strategies for combined cooling heating and

Our models successfully reproduce measured performance of both CHP and CCHP FCS

electric power (CCHP) fuel cell systems (FCS). over a wide operating range

Goal: Develop advanced, inter-disciplinary modeling capabilities to optimally design, install, and control inte-

grated energy systems composed of CCHP FCS and energy storage for providing energy to buildings Efficiencies vs. Inlet fuel flow (200 mA/cm?)
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Depending on market conditions and engineering performance, costs are often lowest with
our strategy vii -- networking; variable heat-to-power; tunable cooling-to-heat; maximum
electrical as the primary control; and load following heat & then cooling demands.

Electricity: 47 units, n, = 33%

CCHP converts heat to cooling power via one of a few different thermodynamic cycles.

Strategy vijji - Electrical Max - Cooling Load Following -
Heat Load Following

Fuel Cell System Installed Capacity (%)

50% 7 —x— Total Annual Cost Savings__ 160
p proac R “%i Thermal Storage Capacity+ 140
40% - % _ Cooling Storage Capacit
() g g P y 120 ‘%.
We develop advanced chemical engineering and techno-economic-environmental models of DU 100 8
- - . - - O © <
CCHP FCS to optimally design and control these systems under different engineering perfor- = 5 50 O =
° ° : C [ 5]
mance and market characteristics. S S 20% - s D=
. A doewt 3 | o Eloctne < -§
—=y power 10% - i
reComos Pl am )k P generated o
- At A v -— 20
e | " o] 0% i e . - 0
T =] L 0% 148% 297% 445% 593% 741%
i ¥

Strategy viii shows bimodal optimal heating storage capacity and multi-modal optimal cooling
storage capacity, caused by the seasonal shape of the demand curves.
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Our models identify the optimal dispatch of CCHP FCS and energy storage over time.
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Q. Q Q. cooling (yellow), fill storage (green) after meeting instantaneous cooling demand, and finally discharge cooling stor-
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Significance

® Our chemical engineering models of FCS coupled with absorption chillers describe the funda-

Our models are independently verified with data from manufacturers and the literature.

Cooling Output Sensitivity to FC Exhaust Flow Rate mental physics of components and reproduce measured system-wide performance data.
S 160 ——Texh,Yazaki=200'C ® Models indicate that CCHP FCS can achieve efficiencies above 80% with careful thermal
B ===Texh,Yazaki=220C integration.
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Fuel Cell Exhaust Gas Flow Rate (m3/hr) [EX, C, H] is best, particularly with no grid connection.
B Thermal storage is occasionally economical; cooling storage is rarely economical; electrical
¥ COP versus Fuel Cell Exhaust Temperature storage Is not economical.
S ' —— Margalef Model m Strategies v [E, H, C] and vii [EX, H, C] have the lowest CO2 emissions.
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